Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching.

نویسندگان

  • Wen-Tien Tsai
  • Chi-Wei Lai
  • Kuo-Jong Hsien
چکیده

This work was a study of the chemical modification of diatomaceous earth (DE) using hydrofluoric acid (HF) solution. Under the experimental conditions investigated, it was found that HF under controlled conditions significantly etched inward into the interior of the existing pore structure in the clay mineral due to its high content of silica, leaving a framework possessing a larger BET surface area (ca. 10 m2 g(-1)) in comparison with that (ca. 4 m2 g(-1)) of its precursor (i.e., DE). Further, the results indicated that the HF concentration is a more determining factor in creating more open pores than other process parameters (temperature, holding time, and solid/liquid ratio). This observation was also in close agreement with the examinations by the silicon analysis, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption kinetics and the adsorption isotherm of methylene blue onto the resulting clay adsorbent can be well described by a pseudo-second-order reaction model and the Freundlich model, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of hydrofluoric acid concentration and etching time on the surface roughness of CAD/CAM ceramics

Introduction: Dental ceramics are considered as materials that can restore the appearance of natural teeth. Etching the inner surface of a ceramic restoration with hydrofluoric acid (HF) followed by using a silane coupling agent is a well-known and recommended method to increase the bond strength. The aim of etching on ceramic structure is to enhance the surface roughness (Ra) and energy and to...

متن کامل

Use of modified diatomaceous earth for removal and recovery of viruses in water.

Diatomaceous earth was modified by in situ precipitation of metallic hydroxides. Modification decreased the negative charge on the diatomaceous earth and increased its ability to adsorb viruses in water. Electrostatic interactions were more important than hydrophobic interactions in virus adsorption to modified diatomaceous earth. Filters containing diatomaceous earth modified by in situ precip...

متن کامل

Effect of hydrofluoric acid concentration and etching time on microtensile bond strength of suprinity and enamic CAD/CAM ceramics to resin cement

Introduction: The use of dental ceramics has increased due to their beauty and biocompatibility. The aim of this study was to evaluate the effect of hydrofluoric acid concentration and etching time on microtensile bond strength (μTBS) of the Enamic and Suprinity ceramics. Material & Methods: In this in vitro study, two hydrofluoric acid (HFA) concentrations of 5% (A) and 10% (B) were used at t...

متن کامل

CHARACTERIZATION OF MICRO/NANO POROUS HOLLOW GLASS MICROSPHERES FABRICATED THROUGH VARIOUS CHEMICAL ETCHING PROCESSE FOR USE IN SMART COATINGS

Porous hollow glass microspheres have many uses, including encapsulation of active materials. In this paper a fast and facile method for fabricating porous hollow glass-microspheres was demonstrated by etching them using dilute hydrofluoric acid. Then, a highly reactive amine was infiltrated into the etched glass microspheres. Scanning electron microscopy was conducted for the hollow glass micr...

متن کامل

Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies.

Diatom silica microcapsules prepared by purification of diatomaceous earth (DE) were functionalised by dopamine modified iron-oxide nanoparticles, in order to introduce diatoms with magnetic properties. The application of magnetised diatoms as magnetically guided drug delivery microcarriers has been demonstrated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 297 2  شماره 

صفحات  -

تاریخ انتشار 2006